If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+n-4=0
a = 4; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·4·(-4)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{65}}{2*4}=\frac{-1-\sqrt{65}}{8} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{65}}{2*4}=\frac{-1+\sqrt{65}}{8} $
| 3v^2+8v-2=0 | | 4x^2=45x | | -15.36=3.2(x+0.2) | | 15x=24x-15 | | 1.25(x+-3)=-10 | | 45+3x+12=180 | | 3x+12+45=180 | | .1x=77 | | 10x-45=9 | | 55+2x+15=180 | | 4y-2=50 | | 4y-2=-40 | | 3-4u=5 | | -4/7b+3/4=1/2 | | x^2-33x-106=0 | | 2(5x-14)=7 | | 6y=5=7 | | 6x9=6x(5+) | | 4(6y-1)=11 | | 997.27=29x+-10 | | 5(6x-2)=4 | | 4b+2=4 | | 54.99=29x+-10 | | 6x+14=4x+26 | | 3(8x-4)=15 | | 3(8x-4=15 | | 7y+30=90 | | 76+w=180 | | 5y-14=2 | | .11y+13=90 | | 99.99=29x+-10 | | 3/8-n=64 |